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Abstract. This paper provides preliminary insight into stiffness profile
identification of a complex flexible object by robotic manipulation. The
object is in the shape of the letter ‘Y’, chosen to resemble a living plant.
The object is approximately modelled as a spring mass system. The robot
manipulates the object with one or two arms grasped at the ends of the
‘Y’, and makes visual measurements which locates the object’s position in
space. Identification results from an optimization approach are compared
for both one and two arm manipulation and sensing with and without
vision. The results are not consistent with the expected physical object’s
properties due to a failure to observe the motion dependence between the
object’s connected segments. The result provides insight into the problem
of assessing the minimal information needed to identify the stiffness of a
flexible object, an issue of importance to automated approaches.

1 Introduction

Physical Experiment Vision Simulation

Fig. 1. The physical experiment, vision capture (in green), and simulation of baxter
manipulating a flexible object.

? This work was supported by a NASA Early Career Faculty fellowship
NNX12AQ47GS02. We are grateful for this support.



2 Robotic Manipulation for Identification of Flexible Objects

The goal of this work is to use a robotic arm and an external vision system
to identify the behavior of the flexible object shown in Figure 1. This is an
important step toward manipulation of flexible objects such as living plants,
rubber tubes, and clothes [22, 19, 2, 6].

There are many methods to model and simulate flexible objects [11, 12]. A
common approach is to model the object as a lattice or collection of links of
masses and springs [20, 21, 11]. This approach has been used to simulate linear
object like strings, hair, and electrical cables for which the model is a series of
masses linked together with springs.

We also model the flexible object as a spring mass system. In [3] we mod-
eled a rubber tyre in such a way, and identified the spring constants for its
uniform stiffness with a novel identification method. In this paper, we explore a
more complex structure in the form of a foam ‘Y’ made of tubes with differing
stiffnesses. We observe that not only must we carefully plan where to manip-
ulate an object in order to sufficiently excite all of its degrees of freedom for
measurement—in this case at the end of each Y—but that this is insufficient to
accurately identify its stiffness profile, even with additional measurements made
by an external vision system. The failure in identification is due to the motion
dependence between the object’s segments.

Two types of sensing are investigated. The first is the joint angles and torques
of Rethink Robotic’s Baxter robot’s arms. The second is an external vision sys-
tem that produces a point cloud of the object and through filtering and fitting,
can locate specific points on the object. We note that the vision cannot make
any torque or force measurements and as such can not directly measure stiffness
properties.

We model the object with the same underlying mechanics as the robot arm—
i.e., as a collection of rigid bodies connected at joints by springs—allowing us to
utilize the vast theory of rigid body mechanics [15]. Also, this enables planning
and control to be done in the combined arm and object configuration space
instead of only the end effector space or object space. We then use an optimal
control approach in [3] for calculating model properties that best match the
behavior of the flexible object. The physical experiment, the vision capture, and
the model can be viewed in Figure 1.

As in [3], we use variational integrators to simulate the robot and object.
Variational integrators can be used to describe discrete-time equations of motion
of a mechanical system. They are designed from the least action principle and
have good properties that agree with known physical phenomenon like stable
energy behavior [16]. All simulations were implemented in trep [8, 9], which is a
tool to simulate articulated rigid bodies using midpoint variational integrators.

1.1 Organization of this paper

This paper is organized as follows: Section 2 sets up the experiment with the
robot and flexible object. In Section 3, the flexible object is modeled as a con-
nection of springs and masses. This section also reviews variational integrators.
Section 4 discusses the visual perception system and the techniques to filter and
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model fit the measured data. Section 5 reviews the identification algorithm from
[3]. Section 6 conducts the identification on the flexible object and compares
identification with and without vision, as well as discusses the results..

2 Example Experiment Setup

T3

T1

T2

wT2

wT1

wT3

Fig. 2. Model of Baxter manipulating a flexible object. The object is composed of 3
tubes, each approximated with four rigid links. The spheres illustrate the location of
the masses and their relative values. The tube segments are labelled T1, T2, and T3,
and the points at the ends of the tube are wT1 , wT2 . and wT3 .

The goal of the example experiment is to identify stiffness properties of a
flexible object. The flexible object has the shape of the letter ‘Y’. It was chosen
to resemble the basic geometry of a living plant. The base, or ‘trunk’ is attached
to the ground and is labelled T1. We investigate two scenarios. In the first, the
robot has the point wT2 of branch T2 grasped, and the branch T3 is free (refer
to Figure 2). In the second scenario, the robot has both points wT2 and wT3

grasped using both arms. The goal is to manipulate the grasped branch so that
the movement of the uncontrolled free branch can be predicted.

To improve prediction, we conduct the parameter identification optimization
algorithm in [3] in order to identify the model’s stiffness properties. The iden-
tification is made with physical contact data—i.e. joint angle and torques from
one or two arms—and a vision system to capture the motion of the full flexible
object. The identification process is the same as in [3] once the vision data has
been fitted to the model.
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The flexible object is foam tubing with differing widths for each of the T1,
T2, and T3 sections. The three tubes are connected with a ‘Y’ PVC joint and
glue. The trunk tube has length 0.813m and mass 0.064Kg. It is the widest tube
with radius 0.032m. The grasped tube has length 0.610m and mass 0.015Kg and
is the second widest tube with radius 0.025m. The free tube has length 0.737m
and mass 0.016Kg. It is the thinnest with radius 0.019m.

We use Rethink Robotics’ Baxter robot [5] to both manipulate and measure
the object. Baxter’s arms each have 7 degrees of freedom. The arms are designed
for compliance by means of series elastic actuators in each joint that allows for
force sensing and control. Baxter publishes the joint angles and torques at 100Hz.
A picture of Baxter manipulating the flexible object is in Figure 1.

3 Model and Simulation

We model the flexible object as a spring mass system by approximating the T1,
T2, and T3 segments each with four rigid links of uniform lengths and masses, con-
nected by joints with torsional springs—see Figure 2. Each joint is 3-dimensional
allowing for bending and twisting motions of the flexible object. In total, the
flexible object is 36 dimensional. The goal of the identification, Section 5, is to
identify the torsional springs’ spring constants. We label these parameters as ρ.

Due to Baxter’s 7 degrees of freedom arms, the system of Baxter grasping
one end of the flexible object (neglecting the other arm) has a total number of
43 configuration variables. When grasping both ends of the object, (using both
arms) the model has a total number of 50 configuration variables. The dimen-
sions, inertia, and other information concerning Baxter’s arm can be obtained
at https://github.com/RethinkRobotics.

3.1 Simulation

The model for both Baxter’s arm and the flexible object are a series of rigid
links connected by rotational joints. As such, the dynamics of both the manipu-
lator and the object can be handled together. We use variational integrators to
simulate the system dynamics. Variational integrators are a discrete-time repre-
sentation of the equations of motion of a mechanical system. They are designed
from the least action principle and have good properties that agree with known
physical phenomenon like stable energy behavior [16].

Simulations are for a finite time interval [0, tf ] with discrete times t0, t1, . . . , tkf ,
where t0 = 0, tkf = tf and kf + 1 is the total number of discrete times in the
interval. The simulation—i.e. the solving of the system dynamics—will result in
a state xk := x(tk) for each k. For variational integrators, the state is composed
of the configuration, labelled qk for time tk, as well as a term labelled pk, also for
time tk. For systems without external forcing, pk is the conserved momentum.
For the purposes of this paper, it can simply be thought of as analogous to the
discrete velocity, which is often paired with qk to make up the state. The state
is xk := [qk, pk]T .
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The literature on variational integrators [13] provides a one-step mapping to
update the state at the previous time xk to the next time xk+1. We provide a
short high-level review of variational integrators. We write the one-step mapping
which constitutes the systems equations of motion as

xk+1 = f(xk, ρ, tk). (1)

Here, f explicitly depends on the previous state, time, and the parameters which
we wish to identify. While we write the equations of motion as an explicit equa-
tion, the equations are in fact implicit and rely on root solving to update the
state.

The equations encapsulate the system’s Lagrangian, any external forcing,
holonomic constraints, as well as a choice of quadrature for approximating inte-
grals. The function f can be linearized. We write

Ak =
∂

∂xk
f(xk, ρ, tk) and Bk =

∂

∂ρ
f(xk, ρ, tk). (2)

The equations to calculate the linearization with respect to the state and pa-
rameters can be found in [3]. They are needed for calculating the gradient for
parameter identification as part of an iterative optimization.

3.2 Simulation of Example

We use variational integrators to simulate Baxter manipulating the flexible ob-
ject through the simulation tool trep [8]. The tool simulates articulated rigid
bodies using midpoint variational integrators. It additionally provides partial
derivative calculations that we need for the system linearization, Eq.(2).

The system of Baxter manipulating the flexible object with a single arm has
a 43 dimensional configuration. Therefore, the system’s state, xk = [qk, pk]T ,
is 86 dimensional. For the system of Baxter manipulating with both arms, the
configuration is 50 dimensional and the state is 100 dimensional. The discrete
dynamics f , Eq.(1), is given by the discrete system Lagrangian, discrete exter-
nal forcing, and holonomoic constraints—see [3, 13]. The system Lagrangian is
specified by the kinetic and potential energies of Baxter and the object. External
forces enter the system through the torques applied by the motors at each of
Baxter’s joints. Additionally, holonomic constraints are needed to ensure that
Baxter’s end effectors remain in contact with the object. We chose a time step
of 0.01 seconds, which matches the broadcast frequency of Baxter.

Nominally, the simulation will perfectly agree with Baxter’s measured joint
torque and angles for a given experiment. However, due to model and sensor
disturbances, which are always an issue for real systems, this will not be the
case. Furthermore, since the system is unstable—i.e. small disturbances can re-
sult in large changes to trajectory—directly feeding the measured torques into
the model will not result in a meaningful simulation. Therefore, the measured
joint torques, labelled F , and measured joint angles, labelled b, must be filtered
through a feedback loop. We use a simple proportional control law with gain K:

Fk = F k −Kk(bk − bk),
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where F and b are the simulated joint torques and angles for the filtered control
input. When K is large, the effect the parameters have on the simulation is
dominated by the control and as such, the system cannot be identified. However,
if K is too small, the system will remain unstable and not track the measured
trajectory well enough to be meaningful. Correctly choosing K for the purposes
of parameter identification of unstable systems is left for future work. For this
paper, we choseK from a finite horizon LQR which results in an optimal feedback
gain from the model linearized around bmeas and a quadratic cost functional (see
[1] for LQR). The tradeoff between tracking the joint angles or joint torques is
directly represented in the quadratic cost for specifying the size of K.

4 Vision

With the goal to improve parameter identification, the flexible object is visually
tracked using an out of the box depth sensor, the Asus Xtion Pro Live. The
depth sensor captures a point cloud, G, of the experiment. Processing G consists
of three steps: filtering, segmentation, and graph creation.

A filtering component within the motion planning framework MoveIt! [4]
performs the first step of self-filtering. It removes points detected on the robots
body and arms. This is accomplished using the realtime joint states and cal-
culated coordinate transforms to determine the robots configuration within the
point cloud. A small amount of padding is included in the filtering to account for
calibration error. The Point Cloud Library (PCL) [18] provides the second level
of filtering, removing points detected behind the robot and on the floor. Finally,
a statistical outlier removal filter removes remaining noise and measurement
errors.

The segmentation of the filtered point cloud Gfiltered is accomplished using
a custom algorithm built on top of PCL. This step converts the T1, T2, and T3
sections (refer to Figure 2) of the object into segmented components that can
later be turned into a graph, as shown in Figure 3. The lowest point in the point
cloud (aligned with gravity) seeds the algorithm. The k1 nearest neighbors to
this point is then chosen using a Kd Tree to represent a segment s of the plant
model. The centroid of s is calculated and a second k1 nearest neighbors search
finds a centered segment scentered at the base of the plant.

Assuming the number of points in scentered are above a minimum threshold
(to remove noise), the 3d centroid of scentered is added to a processed graph
Gprocessed and the points in scentered are removed from Gfiltered. The next near-
est neighbor to scentered is chosen as the new segment starting point and the
algorithm repeats. Occasionally, there are insufficient nearest neighbors in a seg-
ment if, for example, the algorithm has reached the end of a plant branch. In
this case, a random point is chosen in the remaining point cloud Gfiltered to
continue the search, until no further points remain.

The final processing step takes the disconnected points in Gprocessed and per-
forms one final series of nearest neighbor searches to connect the nodes together
to represent a flexible object modeled as a series of connected rigid bodies. These
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Fig. 3. Vision of flexible object.

connected rigid bodies give a surprisingly accurate three dimensional reconstruc-
tion of a flexible object in soft-realtime, processing new point clouds at a rate
averaging 3 hz.

4.1 Fitting to Model

The processed points in Gprocessed need to be fitted to the static model of the
plant to be useful. The model is a discretization of the physical object where the
flexible object’s configuration specifies the location of the discretization points.
Label the objects configuration as qo.

The fitting is a calculation on qo and is accomplished as follows: LetGmodel(qo)
be a graph specified for configuration qo with the discrete points as its ver-
tices and adjacent points in the model as its edges. Any two adjacent points in
Gmodel(qo) can be connected by a line segment in space. Let Lmodel(qo) be the
collection of these line segments. Further, let d(p, `) be the shortest Euclidean
distance between the point p ∈ Gprocessed and line segment ` ∈ Lmodel(qo). De-
fine d(p, Lmodel(qo)) := min`∈Lmodel(qo) d(p, `) as the least distance between p
and any line segment in Lmodel(qo). This can be done for each p ∈ Gprocessed.
The fitting is given by the qo for which the points in Gprocessed are nearest the
line segments Lmodel(qo)—i.e. by the optimization program

arg min
q0

∑
p∈Gprocessed

d(p, Lmodel(qo)). (3)
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4.2 Vision Tracking Concerns

A number of tuned parameters make the vision filtering and fitting algorithms
sensitive to object size, the distance between the camera and object, and vari-
ability of the object’s thicknesses. However, it works well for our experimental
goals.

One major shortcoming of the vision tracking pipeline developed for this
experiment is occasional loss of data due to buffering issues and self occlusion.
Because of the computational complexity of our flexible object manipulation
pipeline, the experiment was run on 3 distributed commodity PCs using ROS
[17]. A common issue is clock time synchronization between the three PCs, and
ROS messages being dropped due to full buffers. This causes the robot trans-
forms to be published with old time stamps and the robot self-filtering of the
point clouds to stall, ultimately resulting in choppiness in the visual tracking of
the plant model. This is an area of continued investigation and improvement.

5 Identification

The goal of the identification is to calculate the system model parameters that
best agree with the physical behavior of the flexible object. For the example in
the paper, the parameters we wish to identify are the spring constants associated
with the flexible object spring mass model.

Each joint of the flexible object is 3 dimensional; each can rotate around
each axis. As seen in figure 4, each joint frame has the Z-axis aligned with the
link. Therefore, a bend in the tube at a joint is realized by a rotation about
the X- and Y -axes and a twist in the tube is a rotation about the Z-axis. The
object’s configuration specifies the amount each frame is rotated. Because the
foam is uniformly distributed for each tube, we assume that the spring constants
associated with bending—i.e. rotations about the X and Y axes—are the same
for a single tube.

Label the torsional spring constant about the X-axis (alternatively Y or Z)

for the ith tube as κTi,X (alt, κTi,Y or κTi,Z). There are 6 total parameters
ρ = [ρ1, . . . , ρ6] in our model, where

ρ1 = κT1,X = κT1,Y ,
ρ2 = κT1,Z ,
ρ3 = κT2,X = κT2,Y ,
ρ4 = κT2,Z ,
ρ5 = κT3,X = κT3,Y , and
ρ6 = κT3,Z .

(4)

The goal of Section 6 is to identify ρ by calculating its corresponding simula-
tion that best matches measured data. This parameter optimization is presented
next.
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Fig. 4. Illustration of joint i connecting links i and i + 1 of the flexible object. The
joint is a rotation around the X, Y , and Z axes.

5.1 Optimal Parameter Identification

The goal of parameter optimization is to calculate the model parameters ρ that
minimize a cost functional. The cost functional is the integral of a running cost
`d(xk, ρ) plus a terminal cost m(xkf , ρ):

min
ρ

[
Jd(ρ) :=

kf∑
k=1

`d(xk, ρ) +md(xkf , ρ)
]

constrained to the dynamics, xk+1 = f(xk, ρ, tk). Since this is a nonlinear op-
timal controls problem, we turn to iterative methods like steepest descent to
calculate a local minima. In order to apply steepest descent, we must have ac-
cess to the gradient of the cost, which is given in the following Lemma from
[3].

Lemma 1. Suppose f(xk, ρ, tk) is C2 with respect to xk and ρ. Let Ak and Bk
form the linearization of f , Eq.(2), and assume fk exists. Then,

∇Jd(ρ) =

kf∑
k=1

λkBk−1 +
∂

∂ρ
`d(xk, ρ) +

∂

∂ρ
md(xkf , ρ) (5)

where λk is the solution to the backward one-step mapping

λk = λk+1Ak +
∂

∂xk
`d(xk, ρ) (6)

starting from λkf = ∂
∂xkf

`(xkf , ρ) + ∂
∂xkf

md(xkf , ρ).
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It is worth noting that fk is not guaranteed to exist, but its existence can
be checked using the Implicit Function Theorem. In [7] a couple of scenarios
are shown for which such singularities occur. Also, [14] reports the gradient and
Hessian for optimal parameter identification in continuous time. The steepest
descent direction is −∇Jd(ρ) and the steepest descent algorithm can be applied
[10].

6 Identification for Example

The parameters to be identified are the spring constants of the flexible object
given by the six dimensional ρ. The identification calculates the value ρ with
simulation that best matches the measured data, at least locally. We do the
matching for two sets of measured data and for two scenarios—i.e. for a total
of four experiments. The first measurement set is just Baxter’s arm joint torque
and joint angle measurements while the second also includes vision (see Section
4). The first scenario is Baxter manipulating one end of the object with a single
arm and the second scenario is Baxter grasping both ends using both arms.

The identification is made by minimizing the error between simulated motion
for a given ρ and measured motion at one to three points on the object, depending
on the available measurements. The three points are the points at the end of
the three tubes, labelled wT1 , wT2 , and wT

3

(refer to Figure 2). The simulated
points are labelled wT1

k (ρ), wT2

k (ρ), and wT3

k (ρ) for parameters ρ at time tk. The

measured points at time tk are labelled wT1

k , wT2

k , and wT3

k . The point wT1 can
only be measured with vision, while the points wT2 and wT3 are measured by
the robotic arm when grasped, otherwise they are measured by vision.

As discussed in Section 4.2, vision measurements arrive at irregular inter-
vals and sometimes of poor quality due to missing data. The following process
removes bad vision data and aligns the good data with the timing of the simu-
lation: From Section 4, each frame of vision data is processed resulting in points
Gprocessed and fitted to the model with optimal fit of q?o . Recall q?o is the object’s
configuration that best fits the data and is calculated from the program Eq.(3).
The frame occurs at a time s and so we label that frame’s fit as q?o(s). Fur-
thermore, the quality of the fit is quantified by the value of d(p, Lmodel(q

?
o(s))),

where lesser values correspond to better fits. As such, ‘good’ data is the config-
urations q?o(s) where

∑
p∈Gprocessed

d(p, Lmodel(q
?
o(s))) < dmax, a user specified

tolerance. Data that does not meet this requirement is discarded. In order to
align the data timing with the simulation, we first interpolate in time over the
remaining data using a cubic spline and label the result q?o,interp. Second, we
calculate the simulation times tk that are nearest the times s of the remaining
data. Define σ = {σ1, . . . , σkf } as σk = 1 if tk is the simulation time nearest
a vision frame time s. In the identification, the cost function depends on the
vision data q?o,interp(tk) for which σk = 1, where the points wTi

k , i = 1, 2, 3, are
calculated using forward kinematics.
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Aside: Since we have access to q?o,interp(tk), we could alternatively choose to
minimize the error in the simulated and measured configurations instead of at
specific points. However, the position of any point on the object is not uniquely
specified by a single configuration. In fact, since the vision system cannot mea-
sure a twist in a single tube, every configuration specifying the rotation around
its local Z-axis (see Figure 4) is arbitrarily set to 0. This results in a single
measured object configuration, but it is unlikely that this choice results in the
same configuration as the one simulated, even if the vision perfectly measures
the position of all locations on the object.

The identification locally minimizes a cost function Jd given by running cost
`d(qk, ρ) and the terminal cost md(qkf , ρ). Both depend on the error between
simulated and measured. Label the errors for each of the three points as:

εT1

k = (wT1

k (ρ)− wT1

k ), εT2

k := wT2

k (ρ)− wT2

k , and εT3

k = (wT3

k (ρ)− wT3

k ).

For the measurements that depend on vision, their corresponding error terms will
be multiplied by σk in the running cost. The identification then locally minimizes
Jd using the approach in [3] to calculate the locally optimal parameters ρ? from
an initial guess of ρ = [3, 3, 3, 3, 3, 3]T and inequality constraint ρi ≥ 0—see
Section 5.

The results follow:

6.1 Single Arm and No Vision

Without vision, the only measurements are Baxter’s arm joint torques and an-
gles. Baxter is only in contact with the object at the point wT2 , and as such can
only measure the flexible object’s motion at that single point. This measurement
is wT2

k . The running cost, `d, and terminal cost, md, in the cost Jd are set as:

`d(qk, ρ) =
1

2
(εT2

k )T εT2

k and md(qkf , ρ) =
1

2
(εT2

kf
)T εT2

kf
.

The locally optimal parameters for the single arm, no vision, case are ρ?SA,NV =

[23.780, 0.000, 18.357, 11.103, 3.200, 3.059]T .

6.2 Single Arm and Vision

With vision, the motion of each point wT1 , wT2 , and wT3 can be measured. Only
wT2

k is measured from the robot arm, while wT1

k and wT3

k are measured from
vision and are only valid at times tk where σk = 1.

The running cost is

`d(qk, ρ) =
1

2
σk(εT1

k )T εT1

k +
1

2
(εT2

k )T εT2

k +
1

2
σk(εT3

k )T εT3

k .

We set the running cost to be md(qkf , ρ) = `d(qkf , ρ). Executing the identifica-
tion results in locally optimal parameters ρ?SA,V = [22.270, 13.593, 10.735, 8.202,

11.5111, 9.692]T for the single arm with vision measurements scenario.
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6.3 Dual Arms and No Vision

With two arms and without vision, only the points wT2 and wT3 are measured.
The running and terminal costs are

`d(qk, ρ) =
1

2
(εT2

k )T εT2

k +
1

2
(εT3

k )T εT3

k

and md(qkf , ρ) = `d(qkf , ρ). The identification results in the locally optimal
parameters ρ?DA,NV = [19.559, 4.965, 8.575, 10.374, 0.000, 11.287]T .

6.4 Dual Arms and Vision

Finally, with both arms and vision, all points can be measured, but only the
points wT2 and wT3 are measured from the arm and wT3 is measured from
vision. The running and terminal costs are

`d(qk, ρ) =
1

2
σk(εT1

k )T εT1

k +
1

2
(εT2

k )T εT2

k +
1

2
(εT3

k )T εT3

k .

and md(qkf , ρ) = `d(qkf , ρ). The optimal parameters are identified as ρ?DA,V =

[24.840, 0.000, 12.373, 30.775, 1.406, 24.900]T .

6.5 Discussion of Results

The identified model parameters are not consistent with physical behavior. For
example, it is unreasonable to expect that a physical tube does not have any
stiffness associated with bending or twisting, which is reported by an identified
spring constant of zero in all experiments except one. It is worth noting that
even the experiment for which the robot manipulates both ends of the object
and uses vision to locate the junction point, wT1 , results in a spring constant
with value 0.

We expect that this negative result is due to the motion dependence between
the object’s segments, which was not observable by the object’s motion at the
measurement locations wT1 , wT2 , wT3 . In other words, we expect that with a
perfect model and perfect measurements, the parameters ρ would not uniquely
specify the motion of the measurement locations—or, at the least, that the pa-
rameters are highly sensitive to disturbances. This explanation is analogous to
the observability gramian of linear control analysis being nonsingular.

To illustrate the issue, we look at a simple two spring system. Suppose both
springs’ spring constants differ and are unknown. One end of one spring is at-
tached to one end of the other string. If the spring system is pulled apart and only
the position and forces of the free ends are measured, then the spring constants
cannot be identified.

Now, suppose external vision measurements are available and the attachment
point can be measured. Then, the displacement of each spring caused by the
external forces can be measured and the spring constants can be identified. We
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further complicate the system by connecting in series two torsional springs of
differing, unknown spring constants. A known torque is applied to the system
and the total angular displacement is measured. The goal is to identify the spring
constants. However, assuming the vision system not able to measure the angular
displacement of either torsional spring, there is once again an identifiability issue
even with vision information.

This simple spring example and the identification results of the significantly
higher dimensional system in this paper, provide insight into the problem of
determining the minimal information needed to assess the stiffness of flexible
objects. Solving such a problem would be invaluable to an automated identifi-
cation routine for identification of other flexible objects with complex shapes or
nonuniform stiffnesses. This problem will be addressed in future work.

Even though the identified parameters are not consistent with physical be-
havior, they are still useful depending on the desired task. For instance, the
identified model is valid for planning a manipulation that moves a measurement
point to a desired location. This problem is also planned future work.

7 Conclusion

The paper investigates the problem of identifying the stiffness profile of a flexible
object shaped like the letter ‘Y’ through robotic manipulation. The robotic arms
and a vision system measure the object’s motion. Four experiments are run, once
each for each of the following scenarios: manipulation with one or two arms and
measurements with or without vision. The identification minimizes the error
between the simulated and measured movement of up to three locations on
the object depending on the available measurements. The identification results
do not match the objects’ expected physical properties, which we attribute to
a failure to observe the motion dependence of the object’s distinct segments.
These results, while negative, provide insight into the problem of determining
the minimal measurements needed to uniquely identify an object’s stiffness.
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6. P Jiménez. Survey on model-based manipulation planning of deformable objects.
Robotics and Computer-Integrated Manufacturing, 28(2):154–163, 2012.

7. E. Johnson, J. Schultz, and T. D. Murphey. Structured linearization of discrete
mechanical systems for analysis and optimal control. Transactions on Automation
Science and Engineering, 2014. (Accepted).

8. E. R. Johnson and T. D. Murphey. Scalable variational integrators for constrained
mechanical systems in generalized coordinates. IEEE Transactions on Robotics,
25(6):1249–1261, 2009.

9. E. R. Johnson and T. D. Murphey. Linearizations for mechanical systems in gener-
alized coordinates. In American Control Conference, pages 629–633. IEEE, 2010.

10. C. T. Kelley. Iterative Methods for Optimization. Society for Industrial and Applied
Mathematics, 1999.

11. F. F. Khalil and P. Payeur. Dexterous robotic manipulation of deformable objects
with multi-sensory feedback-a review. Robot Manipulators, Trends and Develop-
ment, In-Teh (Eds), pages 587 – 621, 2010.

12. J. Lang, D. K. Pai, and R. J. Woodham. Acquisition of elastic models for interactive
simulation. The International Journal of Robotics Research, 21(8):713–733, 2002.

13. J. E. Marsden and M. West. Discrete mechanics and variational integrators. Acta
Numerica, 10(1):357–514, 2001.

14. L. M. Miller and T. D. Murphey. Simultaneous optimal estimation of mode transi-
tion times and parameters applied to simple traction models. IEEE Transactions
on Robotics, 29(6):1496–1503, 2013.

15. R. M. Murray, Z. Li, and S. S. Sastry. A mathematical introduction to robotic
manipulation. CRC press, 1994.

16. D. Pekarek and T. D. Murphey. A backwards error analysis approach for sim-
ulation and control of nonsmooth mechanical systems. In IEEE Conference on
Decision and Control and European Control Conference (CDC-ECC), pages 6942–
6949, 2011.

17. Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3, 2009.

18. Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In
IEEE International Conference on Robotics and Automation, pages 1–4. IEEE,
2011.

19. Mitul Saha and Pekka Isto. Manipulation planning for deformable linear objects.
Robotics, IEEE Transactions on, 23(6):1141–1150, 2007.

20. K. S. M. Sahari, C. H. Min, and Y. C. Hou. Dynamic modeling of string for
robotics application. In Soft Computing and Intelligent Systems (SCIS) and 13th
International Symposium on Advanced Intelligent Systems (ISIS), pages 774–779.
IEEE, 2012.

21. H. Wakamatsu and K. Takahashiand S. Hirai. Dynamic modeling of linear object
deformation based on differential geometry coordinates. In International Confer-
ence on Robotics and Automation, pages 1028–1033. IEEE, 2005.

22. Hidefumi Wakamatsu, Eiji Arai, and Shinichi Hirai. Knotting/unknotting manipu-
lation of deformable linear objects. The International Journal of Robotics Research,
25(4):371–395, 2006.


