
Obstacle Avoidance and Path Planning
Using Mixed Integer Programming

Dave Coleman
Department of Computer Science
University of Colorado Boulder

Boulder, CO, USA
david.t.coleman@colorado.edu

Abstract— In this paper it is demonstrated that obstacle
avoidance and shortest-route path planning, traditionally highly
non-linear problems, can be modeled as linear problem and
solved as a mixed integer programming. In particular, any
number of obstacles each reduced to convex polygons can be
navigated in two dimensions using discretized time steps from an
initial to target point. A benefit of this approach is the problem
can be readily solved with off the shelf optimization software
such as GLPK. A simple implementation is presented with
visualizations and computational efficiency results are discussed.

Keywords – mixed integer programing, linear programing,
obstacle avoidance, shortest path, path planning, robot

I. INTRODUCTION
Robot navigation is a well-developed field to which many

existing solutions already exist. Grid-based search, geometric
algorithms, potential fields and sampling-based algorithms are
all common methods for reducing a set of known obstacles, a
start configuration and a goal configuration into a set of
feasible continuous motions [1][2].

This work is an extension of two previous papers work on
obstacle avoidance and takes their methods a step further.
Shukla et. al. proposes a linear programming-based approach
for optimizing the path of a robot arm in an obstacle oriented
work cell [3]. It is imagined that a 3-dof overhead gantry robot
is navigating a workspace consisting of various obstacles. It is
assumed that every obstacle can be approximated as being
cloaked with rectangle and that the robot arm path is only has
to avoid one obstacle at a time. This assumes that obstacles are
never within close proximity or partially overlapping. The LP
problem is then two solve the shortest of only 3 potential paths
– going left, going right or going above the rectangle. While
computationally very efficient, it is felt that the assumptions are
to constraining to any practical real-world application.

More recent work on obstacle avoidance and path planning
by Schouwenaars et. al. proposes a new approach to fuel-
optimal path planning of multiple vehicles using a both linear
and integer programming [4]. In this work it is demonstrated
that stationary and moving obstacles can be planned along with
multiple other moving vehicles at the same time. Both time and
fuel is optimized using space equations of a dynamical system.
Again, the assumption of rectangular obstacles are assumed
and more complex convex polygons are ignored.

This paper presents the various stages of development of
the presented ILP problem and describes the reasoning behind
the various chosen constraints and values. A software
implementation using the Modeling Language for
Mathematical Programming (AMPL) and GNU Linear
Programming Kit (GLPK) with a C++ and OpenGL interface
to solve the mathematical program is presented. Finally a
comparison of the computational time for various sized
polygons is presented.

II. BASIC OBSTACLE AVOIDANCE OF RECTANGLE
Initially the work of Shukla was replicated in two

dimensions where the LP problem was simply to choose
between moving left or right around a rectangle to optimize the
distance traveled to a goal point.

Figure 1. Two possible paths to travel: to the left of the obstacle or to the
right.

To move around a triangle at most two points need to be
found, 𝑥! and 𝑥!, as shown in Figure 1. The constraints on
these two points change depending on whether the shortest path
is to the left or to the right of the triangle. This decision is
described in the LP program by adding two binary decision
variables A and B. Both A and B must be the values of 0 or 1
and only one can be true at a time. As such, when the LP
program solves the variable A to be 1, the optimal path is to the
left, and when the program, solves B to be 1, the optimal path
is to the right.

Using these two variables A and B, the proper constraints
can be enabled by multiplying the binary variables by the
obstacle’s dimensions. For instance, the x component of the 𝑥!
and 𝑥! coordinates must both be less then the left hand side of
the obstacle when path A is chosen, but must be greater than

University of Colorado Boulder

the right hand side of the rectangle when path B is chosen. This
can be expressed in AMPL format as the following:

var A, binary; (1)
var B, binary;

c1: A + B = 1;
c2: 0 * A + xobstacle_right * B <= x1;
c3: xobstacle_left* A + xworld * B >= x1;

Distance is calculated using a one-norm approximation, or
Manhattan distance, to keep the problem linear. The objective
function is thus to minimize the absolute value between each
set of x and y points. Elimination of each absolute value
requires that a new variable be added for representing absolute
values in a linear function. The following AMPL expression is
then created:

minimize distance: abs1 + abs2 + .. ; (2)
a1: x1 - xi - abs1 <= 0;
a2: -x1 + xi - abs1 <= 0;
a3: y1 - yi - abs2 <= 0;
a4: -y1 + yi - abs2 <= 0;

A testing program is run to visualize the results of this basic
planning optimizer and example results are shown in Figure 2.
It should be noted that the solution path directly grazes the
obstacle in both examples because the classic assumption has
been made that the obstacles have already been enlarged to
account for the size of the moving object, reducing the object
itself to a moving point [1].

Figure 2. Two examples of a solved path from the initial bottom point to the

goal top point around a rectangle obstacle.

As is readily evident in Figure 2, the results of Shukla’s LP
algorithm are not the optimal path around the obstacle due to
the sharp right angle taken at the two turns. The optimal path
would follow a diagonal path directly from the initial position
to the bottom corner of the obstacle, and from the top corner of
the obstacle to the goal point. To improve this path planning
model, this author modified the original LP problem’s
objective function to increase the “importance’ or cost of the
distance between the midpoints points 𝑥! and 𝑥! . This was
accomplished by simply multiplying the distance in the x and y
directions for these points in the objective function by 2. The
modified objective function then looked like the following:

minimize distance: abs1 + abs2 + abs3 + 2*abs4 + 2*abs5 (3)
 + 2*abs6 + abs7 + abs8 + abs9;

The results were a set of points that followed the optimal
path around the rectangular obstacle, as shown in Figure 3. The
entire AMPL model of this implementation can be found in
Appendix A of this paper.

Figure 3. Two examples with same intial and goal locations as in Figure 4

but with optimal path objective function variation.

III. OBSTACLE AVOIDANCE OF CONVEX POLYGON
The previous implementation suffers from the need to have

the start position below the rectangle, the goal position above
the rectangle and no more than one obstacle of rectangular
shape oriented normal to the axis. The following is a highly
modified LP model of the previous problem that works for any
number of arbitrary convex polygons in 2 dimensions. An
example of its ability is demonstrated in Figure 4. The entire
AMPL file for this implementation is presented in Appendix B.

Figure 4. Example of obstacle avoidance of convex polygon

A. Convex Polygon
It is assumed that each obstacle is presented as an ordered

list of points that already form a convex polygon. If a non-
convex obstacle is desired to be included, use of a preexisting
method for computing the convex hull such as the Graham scan
must be first run [5].

B. Time Steps
In the previous implementation of a rectangular obstacle

avoidance scheme most of the problem parameters were
already known and hard-coded into the solution. In contrast,
this second implementation only assumes the location of the
start and goal points are in a non-conflicting state, i.e. not
within an obstacle. Their location within the solution space is

allowed to be anywhere. Additionally, it is important that this
second implementation work for any number of obstacles each
with any number of edges. It is therefore impossible to hard
code a pre-determined number of paths and solution points.

As such, in this LP implementation, N number of time step
coordinates are added. Each coordinate consists of an x and y
point that are each treated as problem variables in the LP
problem. Constraints are added for each time step point such
that there must be at least 0.5 units and no more than 1 units of
absolute one-norm distance from the previous time step point.

The purpose of the 0.5 units of distance minimum between
points is to ensure forward progress of the solution path and
prevent all of the points from clustering at one location. The
purpose of the 1 unit of distance maximum between points is to
ensure that obstacles are not bypassed or “jumped” over by
having two consecutive points locate themselves on opposite
sides of an obstacle, forcing the path into the impossible
condition of cutting through an obstacle. Still, the maximum of
1 unit allows the corners of obstacles to be slightly “cut” as
shown in Figure 5. This condition is addressed by remembering
that obstacles are enlarged to account for the size of moving
object and can be further increased as needed. Decreasing the
maximum spacing between time step points would reduce the
amount of corner cutting but at the cost of computation.

Figure 5. Corner-cutting issue demonstrated

The calculation of how many time steps N are necessary to
find an optimum path is still an area of further research.
Currently it is found by calculating the one-norm distance
between the initial and goal points and increasing that number
by 20%. Setting the number of time steps N too low can result
in the LP problem becoming infeasible because of insufficient
“stretch” of the path to go around the obstacle. Setting N too
high can result in the path “over crowding” or overlapping such
that the path take unnecessary diversions, such as shown in
Figure 6.

Figure 6. Too many time-step points results in unnecessary diversion and

sub-optimal path.

C. Adding Polygon Constraints
For a solution space of T time steps, P polygons each with

E edges, 𝑇×𝑃×𝐸 number of constraints are added to the LP
program. For each polygon an or statement is created using an
binary variable that requires at least one of the E number of
edge constraints to be true for every point in the path. An edge
constraint is easily represented by using the two-point form of a
line and solving for x and y.

 𝑚 = !!!!!
!!!!!

 (4)

 −𝑚𝑥 + 𝑦 ≤ 𝑦! −𝑚𝑥! (5)

Where x and y are the problem variables. Value m and the
right hand side of (5) are pre-computed in the C++ interface to
reduce redundant computation in the AMPL file.

The direction of the equality sign in (5) must be chosen
based on whether the edge of the polygon it represents is facing
up or down with respect to one of the axis as shown in Figure
7. The y-axis is chosen as the determining axis based on
intuition and the C++ interface is once again utilized to pre-
process the facing direction of each edge. This is accomplished
by first finding the minimum and maximum x values in the set
of points in the polygon. The points are then looped through
starting at the point with the minimum x value in a counter-
clockwise direction until the point with the maximum x value
is reached. All of the points in this half of the polygon are set to
face down. The loop then continues until it reaches the
minimum x value again. The points in the second half of the
polygon are set to face up. This face up/face down setting is
represented by giving each point a directionality parameter of
either -1 for down or 1 for up. This variable can then be used in
the AMPL format to change the direction of each edge
constraint equation.

Figure 7. A polygon’s edges pointing either up or down

A special case exception of the above method for adding
edge constraints is when a line is exactly vertical and parallel
with the y-axis. In this condition the slope m is undefined
because the denominator is 0. To avoid this issue a pre-
processing check in C++ is preformed that checks for any two
equal consecutive x values. If one is found, one of the points is
artificially perturbed by adding a small number, in this case
0.1. The amount 0.1 was chosen after the value 0.01 was
demonstrated to occasionally present unsolvable problems,
most likely due to rounding errors.

The afore described edge constraints are described in two
lines in the AMPL file.

s.t. obstacles{t in TT, e in Edges}: (6)
 obst[e,3]*obst[e,1]*points[t,1]-obst[e,3]*points[t,2] <=
 -obst[e,3]*obst[e,2] + M*orer[t,e];

s.t. obstOR{t in TT}: sum{e in Edges} orer[t,e] <= E-1; (7)

Where obst is an array of edges e describing at index 1 the
slope m, at index 2 the right hand value of the constraint, and at
index 3 the direction of the constraint. The variable orer
represents the binary variable for the or condition. M is an
arbitrarily large number that in this problem is set to 1,000. If
set to 10,000 it was found to significantly increase the
computation time of the LP problem.

D. Simulating Quadratic Distance
Similarly to Shukla’s implementation of rectangular path

planning, this algorithm suffers from the non-optimal solution
of one norm distance measurements. This implementation’s
objective function is the sum of the absolute value of each
point’s one norm distance to the next point.

 𝑚𝑖𝑛 𝑥! − 𝑥!!! + 𝑦! − 𝑦!!!!!!
!!! (8)

This results in the LP problem having no notion of diagonal
lines for shorter paths. This notion is introduced into the LP
problem by adding an additional objective component –
minimizing the difference between the change in the x and y
component for each point.

 𝑚𝑖𝑛 𝑥! − 𝑥!!! + 𝑦! − 𝑦!!!!!!
!!! + (9)

 0.5 ∗ 𝑥! − 𝑥!!! − 𝑦! − 𝑦!!!!!!
!!!

This second half of the objective function encourages more
horizontal movements – equal changes in the x and y direction
– to occur. The 0.5 weight reduction factor ensures that the
diagonal traverse movement is considered less important than
overall shortest-path optimization and is necessary to prevent
path wandering.

This addition to the objective function is effective in
increasing the number of 45° path angles but is unable to
encourage translations of any other angle such as 30° or 60°.
Still, it is more optimal than using only a taxi-cab grid.

IV. RESULTS
The previously described AMPL model is solved using

GLPK that is run from within a custom written C++ program.
All adjustable parameters of the model including start and end
location, polygon shapes and the number of time steps are
passed to the AMPL model via a data.dat file that is written by
the C++ program. Once GLPK finished solving the LP
problem, the results are written to a results.dat file and re-read
into the C++ program. The program then draws the obstacle
and solved path using OpenGL.

The following table shows the results of 5 scenarios and
their required computation time on a 2 Ghz Quad Core i7
MacBook Pro running with an Ubuntu virtual machine. The
screenshots of each result is then shown after.

TABLE I. OBSTACLE AVOIDANCE COMPUTATION TIME

 Edges GLPK Time Figure #

1 4 0.6 s Figure 8

2 4 2.9 s Figure 9

3 5 1.5 s Figure 10

4 5 2.6 s Figure 11

5 6 3.1 s Figure 12

6 8 0.2 s Figure 13

Figure 8 Figure 9

Figure 10 Figure 11

Figure 12 Figure 13

V. FUTURE WORK
Because the number of time steps N directly correlates to

the computational time needed to solve a problem, finding the
best value for N is an area of future work. Better handling of
the corner-cutting issue is another area of future work. Finally,
applying this method to a third dimension of path planning is a
large area of exploration.

VI. CONCLUSION
The proposed method of path planning around polygon-

shaped obstacles still has many issues to over come before
being a practical algorithm. The method had very poor
computational efficiency, requiring 𝑇×𝑃×𝐸 number of

constraints and a huge number of variables. In the 8-edge
example shown in Figure 13 the generated LP problem
contained 186 rows, 138 columns and 77 binary integer
variables. Overall, there are many more-efficient methods for
planning around obstacles than the presented LP problem in
this paper.

ACKNOWLEDGMENT
Thanks to Dr. Sriram Sankaranarayanan for his teaching the

Linear Programming class in Fall 2011 at CU Boulder.

REFERENCES
[1] J. Latombe, Robot Motion Planning, Kluwer Academic Publishers, 1991
[2] J. Barraquand, L.E. Kavraki, J.C. Latombe, T.Y. Li, R.Motwani, and

P.Raghavan. A random sampling scheme for path planning. International
Journal of Robotics Research , 16(6):759.774, 1997.

[3] A. Shukla, D. Sule, D. Furtado, A Linear Programming Approach For
Optimizing the Path of Robot Arm In An Obstacle Oriented Work Cell,
Coputers and Industrial Engineering Vol. 23, 1992

[4] T. Schouwenarrs, B. Moor, E. Feron, J. How, Mixed Integer
Programming for Multi-Vehicle Path Planning, ECC2001 Conference,
2001.

[5] R. Graham, An Efficient Algorithm for Determining the Convex Hull of
a Finte Planar Set, Information Processing Letters, 1972

Appendix A: Rectangular Obstacle Avoidance

Parameters ---

Initial Point:
param xi; param yi; param zi;

Final Point:
param xf; param yf; param zf;

Obstacle Coordinates
param xo1; param yo1; param zo1;
param xo2; param yo2; param zo2;
param xo3; param yo3; param zo3;
param xo4; param yo4; param zo4;

Workspace Constraints
param xm; param ym; param zm;

Variables to Solve for ---

var x1; var y1; var z1; # first point
var x2; var y2; var z2; # second point
var abs1; var abs2; var abs3; var abs4; var abs5; var abs6; # absolute values
var abs7; var abs8; var abs9; var abs10; # absolute values
var A, binary; var B, binary; # path choices

Problem ---

minimize distance: abs1 + abs2 + abs3 + 2*abs4 + 2*abs5 + 2*abs6 + abs7 + abs8 + abs9;

path choices
path: A + B = 1;

x1
 l1: 0 *A + xo2*B <= x1; # x1 greater than
 h1: xo1*A + xm *B >= x1; # x1 less than

 l2: 0 <= y1;
 h2: yo1*A + yo2*B >= y1;

 l3: 0 <= z1; h3: z1 <= zm;

x2
 l4: 0 *A + xo3*B <= x2;
 h4: xo4*A + xm *B >= x2;

 l5: yo4*A + xo3*B <= y2;
 h5: ym >= y2;

 l6: 0 <= z2; h6: z2 <= zm;

Distance 1
 a1: x1 - xi - abs1 <= 0; # | x1 - xi |
 a2: -x1 + xi - abs1 <= 0;
 a3: y1 - yi - abs2 <= 0; # | y1 - yi |
 a4: -y1 + yi - abs2 <= 0;
 a5: z1 - zi - abs3 <= 0; # | z1 - zi |
 a6: -z1 + zi - abs3 <= 0;

Distance 2
 a7: x2 - x1 - abs4 <= 0; # | x2 - x1 |
 a8: -x2 + x1 - abs4 <= 0;
 a9: y2 - y1 - abs5 <= 0; # | y2 - y1 |
 a10: -y2 + y1 - abs5 <= 0;
 a11: z2 - z1 - abs6 <= 0; # | z2 - z1 |
 a12: -z2 + z1 - abs6 <= 0;

Distance 3
 a13: xf - x2 - abs7 <= 0; # | xf - x2 |
 a14: -xf + x2 - abs7 <= 0;
 a15: yf - y2 - abs8 <= 0; # | yf - y2 |
 a16: -yf + y2 - abs8 <= 0;
 a17: zf - z2 - abs9 <= 0; # | zf - z2 |
 a18: -zf + z2 - abs9 <= 0;

solve; # directive to solve
display x1, y1, z1, x2, y2, z2, A, B; # print result

printf: "%.3f %.3f %.3f\n", x1, y1, z1 > "result.dat";
printf: "%.3f %.3f %.3f\n", x2, y2, z2 >> "result.dat";
printf: "%d %d\n", A, B >> "result.dat";

end;

Appendix B: Polygon Obstacle Avoidance

Other Parameters --

param N default 4; # number of time steps / points
param NN := N - 1;
param M := 1000; # arbitrary large positive number
param m := 0.001; # arbitrary small number to prevent division by zero
param E default 4; # number of edges in polygon

set T := 1..N; # number of time steps / points
set TT := 1..NN; # one less than number of time steps
set Dims := 1..2; # 2 dimensions: x and y
set C := 1..4; # number of manually created abs constraints
set Edges := 1..E; # number of total edges in polygons
set ConstData :=1..3; # slope, constraint, direction

Input Parameters --

Initial Point:
param xi; param yi; param zi;

Final Point:
param xf; param yf; param zf;

Obstacle Description - edges x 3 data
param obst{e in Edges, c in ConstData};

Variables to Solve for ---

var points{t in T, d in Dims} >= 0; # set of x,y points for problem solution
var abs1{t in TT, d in Dims}; # middle steps
var abs2{c in C}; # initial and final steps
var abs3{t in TT}; # optimize for hypotenues
#var abs4{c in C}; # limit distance in initial and final steps
var orer{t in T, e in Edges} binary; # vars used for doing ORs

Objective Function ---
minimize distance: sum{t in TT, d in Dims} abs1[t,d] + # all constraints between initial and final
 sum{c in C} abs2[c] + # initial and final point constraints
 .5*sum{t in TT} abs3[t]; # optimize hypotenus

Constraints --

ABS Distance between midpoints
s.t. abs_min{t in TT, d in Dims}: points[t+1,d] - points[t,d] - abs1[t,d] <= 0;
s.t. abs_max{t in TT, d in Dims}: -points[t+1,d] + points[t,d] - abs1[t,d] <= 0;

Point to point distance limiter - more than .5 less than 2
s.t. abs_diff1{t in TT}: abs1[t,1] + abs1[t,2] >= .5;
s.t. abs_diff2{t in TT}: abs1[t,1] + abs1[t,2] <= 1;

Point to point distance limiter for init and end
s.t. abs_diff3: abs2[1] + abs2[2] <= 8;
s.t. abs_diff4: abs2[3] + abs2[4] <= 7;

ABS Distance Between change in x and y per point - optimize to hypotenus
s.t. abs_diff5{t in TT}: abs1[t,1] - abs1[t,2] - abs3[t] <= 0;
s.t. abs_diff6{t in TT}: -abs1[t,1] + abs1[t,2] - abs3[t] <= 0;

Obstacle Constraints - Square
direction* slope * x -direction* y <= -direction*constraint+ OR
s.t. obstAll{t in TT, e in Edges}: obst[e,3]*obst[e,1]*points[t,1]-obst[e,3]*points[t,2] <= -obst[e,3]*obst[e,2] +
M*orer[t,e];

#.t. obst1{t in TT}: -m4*points[t,1] + points[t,2] <= (yo1-m4*xo1) + M*orer[t,3]; # x_min
#s.t. obst3{t in TT}: -m1*points[t,1] + points[t,2] <= (yo1-m1*xo1) + M*orer[t,3]; # y_min
#s.t. obst4{t in TT}: m3*points[t,1] - points[t,2] <= -(yo3-m3*xo3) + M*orer[t,4]; # y_max

#s.t. obst1{t in TT}: points[t,1] <= xo1 + M*orer[t,1]; # x_min
#s.t. obst2{t in TT}: -points[t,1] <= -xo2 + M*orer[t,2]; # x_max
#s.t. obst3{t in TT}: points[t,2] <= yo1 + M*orer[t,3]; # y_min
#s.t. obst4{t in TT}: -points[t,2] <= -yo3 + M*orer[t,4]; # y_max
s.t. obstOR{t in TT}: sum{e in Edges} orer[t,e] <= E-1; # at least one must be true

Initial X Axis
s.t. a1: points[1,1] - xi - abs2[1] <= 0;
s.t. a2: -points[1,1] + xi - abs2[1] <= 0;

Initial Y Axis
s.t. a3: points[1,2] - yi - abs2[2] <= 0;
s.t. a4: -points[1,2] + yi - abs2[2] <= 0;

Final X Axis
s.t. a5: points[N,1] - xf - abs2[3] <= 0;

s.t. a6: -points[N,1] + xf - abs2[3] <= 0;

Final Y Axis
s.t. a7: points[N,2] - yf - abs2[4] <= 0;
s.t. a8: -points[N,2] + yf - abs2[4] <= 0;

Solve ---

solve;
#display m1, m2, m3, m4;

printf: "%d\n", 999 > "result.dat";
#printf{t in T, d in D} "%d,%d %.3f \n", t,d,points[t,d] >> "result.dat";
printf{t in T, d in Dims} "%.3f ", points[t,d] >> "result.dat";

#printf: "%.3f %.3f %.3f\n", x1, y1, z1 > "result.dat";
#printf: "%.3f %.3f %.3f\n", x2, y2, z2 >> "result.dat";
#printf: "%d %d\n", A, B >> "result.dat";

end;

